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Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise
level from noisy time series data
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We describe an efficient algorithm which computes the Gaussian kernel correlation integral from noisy time
series; this is subsequently used to estimate the underlying correlation dimension and noise level in the noisy
data. The algorithm first decomposes the integral core into two separate calculations, reducing computing time
from O(N23Nb) to O(N21Nb

2). With other further improvements, this algorithm can speed up the calculation
of the Gaussian kernel correlation integral by a factor ofg;(2 – 10)Nb . We use typical examples to demon-
strate the use of the improved Gaussian kernel algorithm.

PACS number~s!: 05.45.Tp, 02.50.2r, 05.45.Ac, 05.45.Jn
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I. INTRODUCTION

Estimation of dimensions, entropies, and Lyapunov ex
nents has become a standard method of characterizing
complex temporal behavior of a chaotic trajectory from m
sured time series data@1#. Of these, the most widely used
the correlation dimension. This is largely due to the fact t
Grassberger and Procaccia found a simple algorithm to c
pute the correlation integral and the correlation dimensio
believed to be a more relevant measure of the attractor
the other dimension quantities@2#. Many fast and efficient
algorithms have since been developed for calculation of
correlation dimension and found to be successful in cha
terizing dynamics fromclean time series data@3,4#.

When applied to experimental data, the dimension al
rithms have limitations since all recorded data are to so
extent corrupted bynoise, which masks the scaling region a
small scales. It has been shown that a 2% noise is ser
enough to prevent accurate estimation@5#. From an applied
point of view, the problem of characterizing nonlinear tim
series in the presence of noise is therefore nontrivial an
practical significance. Considerable effort has been give
understanding the influence of noise on dimension meas
ments and exploring new scaling laws; see@6–15#. A com-
parison of methods dealing with the influence of Gauss
noise on the correlation dimension can be found in@16#. In
addition, a Grassberger-Procaccia-type algorithm for estim
ing entropy has been developed to characterize experime
data@17#.

In this paper, we address the estimation of correlat
exponents and noise level in the presence of Gaussian n
in time series data. In the presence of noise, the dimen
and entropy are defined as those invariants of the underl
clean time series@12,14,16#. Particular attention is paid to
efficient implementation of the Gaussian kernel algorith
~GKA! developed by Diks@12#. We first decompose the in
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tegral core into two separate calculations, which redu
computing time fromO(N23Nb) to O(N21Nb

2), whereN
andNb are the length of reconstructed state vectors and
number of computed bandwidth values, respectively. W
other further improvements, this algorithm can speed up
calculation of the Gaussian kernel correlation integral b
factor of g;(2 – 10)Nb . We also present robust method
used for nonlinear least squares fitting in extracting corre
tion exponents and noise level. Armed with the improv
algorithms, we find that the GKA provides a reasonable
timate of the correlation dimension and noise level ev
when the contaminated noise is as high as 50% of the si
content.

Our problem is formulated as follows. Suppose that
have a scalar time series$si : i 51,2,...,Ns% sampled at
equally spaced timest i5 iDt, whereDt is the sampling time
interval. The data is assumed to be corrupted by Gaus
noise. Our aim is to measure two dynamical invariants
correlation dimension and entropy—and estimate the no
level in the time series.

Following Takens@18#, the underlying attractor can b
reconstructed using delay co-ordinates. The reconstruc
embeds the measured time series$si% in an m-dimensional
Euclidean space to createN5Ns2(m21)t delay state vec-
tors $xi : i 51,2,...,N% in terms of

xi5@si ,si 1t ,si 12t ,...,si 1~m21!t#
T, ~1!

wheret is an integer, referred to as a time lag~the delay time
is dt5tDt!, andm is called the embedding dimension.

This paper is organized as follows. After this introductio
we describe the Gaussian kernel algorithm and its dir
implementation in Sec. II. We explore the efficient impl
mentation and simplified calculation of the Gaussian ker
correlation integral in Sec. III. Section IV is devoted to tec
nical considerations and further improvements of the GK
Numerical tests are presented by way of examples in Sec
Finally, we conclude this work in Sec. VI.

II. GAUSSIAN KERNEL ALGORITHM

A. Theoretical background

The essence of the Gaussian kernel algorithm in estim
ing correlation exponents and noise level is summarized

ic
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PRE 61 3751EFFICIENT IMPLEMENTATION OF THE GAUSSIAN . . .
follows @12#. ~1! The Gaussian kernel correlation integr
Tm(h) for the noise-free case scales as

Tm~h!5E dx rm~x!E dy rm~y!e2ix2yi2/4h2

;e2mKdtS h

Am
D D

for h→0, m→`, ~2!

whereD andK are the correlation dimension and entropyh
is referred to as the bandwidth, andrm(x) is the distribution
function. The scaling behaviorTm(h);e2mKdthD in Eq. ~2!
was first justified by Ghezet al. @19# and latter by Diks@12#
with inclusion of the factor (1/Am)D, in which them depen-
dence was originally introduced by Franket al. @20# to im-
prove convergence ofK. ~2! In the presence of Gaussia
noise, the distribution functionr̃m(y) can be expressed i
terms of a convolution between the underlying noise-f
distribution functionrm(x) and a normalized Gaussian di
tribution function with standard deviations @12,21#, i.e.,

r̃m~y!5E dx rm~x!rm
g ~ iy2xi !

5
1

~sA2p!m E dx rm~x!e2iy2xi2/2s2
, ~3!

where

rm
g ~ iy2xi !5

1

~sA2p!m
e2iy2xi2/2s2

, ~4!

accounts for noise effects in them-dimensional space.i•i is
the Euclidean (L2) norm.

Under conditions~2! and ~3!, the Gaussian kernel corre
lation integralT̃m(h) in the presence of Gaussian noise a
the corresponding scaling law become@12#

T̃m~h!5E dx r̃m~x!E dy r̃m~y!e2ix2yi2/4h2
~5!

5S h2

h21s2D m/2E dx rm~x!E dy rm~y!

3e2ix2yi2/4~h21s2!

5fS h2

h21s2D m/2

e2mK dtS h21s2

m D D/2

~6!

for Ah21s2→0, m→`,

wheref is a normalized constant.
In Eq. ~6!, D andK are the two invariants to be estimate

and the parameters is referred to as the noise level, define
as

s5
sn

ss
5

sn

Asc
21sn

2
, ~7!
e

wheress , sc , andsn are standard deviations of the inp
noisy signal $si%, underlying clean component$ci%, and
Gaussian noise part$ni%. In the total signalsi5ci1ni , we
have assumed$ci% and $ni% to be statistically independen
i.e., s̄5 c̄1n̄ and ss

25sc
21sn

2, where s̄, c̄, and n̄ are the
means of$si%, $ci%, and$ni%, respectively.

B. Direct implementation of the GKA

The numerical implementation of the Gaussian kernel
gorithm requires the transformation of the input time ser
data $si : i 51,2, . . . ,Ns% into a new time series$v i : i
51,2, . . . ,Ns% according to

v i5
si2 s̄

ss
. ~8!

Under the transformation~8!, the noise effect is described b
the distribution function~4! and the standard deviation of th
noise part iss in Eq. ~7!. Accordingly, the delay state vec
tors are reconstructed by replacing$si% with $v i% in Eq. ~1!.

In the case of discrete sampling, we assume vector po
on the attractor to be dynamically independently distribu
according tor̃m(x) and use an average over delay vectors
replace the integrals over the vector distributions in Eq.~5!.
Consequently,T̃m(h) can be computed by@12#

T̂m~h!5
1

N~N21! (i 51

N

(
j Þ i

N

e2ixi2xj i
2/4h2

. ~9!

In practice,T̂m(h) is calculated at a series of discrete ban
width valueshk (k50,1,2, . . . ,Nb). The parametersD, K,
and s are then extracted through fitting the scaling relati
~6! to the Gaussian kernel correlation sumT̂m(h) computed
from Eq. ~9!. One can see that such a direct implementat
of the GKA has a computational complexityO(N23Nb).

C. Nonlinear fitting

After computing the Gaussian kernel correlation sum,
parametersD, K, and s in Eq. ~6! can be extracted using
nonlinear least squares fitting@22#. Here we exemplify the
GKA described above; a robust fitting procedure will be p
sented in Sec. IV.

Figure 1 illustrates the fittedD, K, ands as a function of
embedding dimension. The clean data are generated by
standard He´non map@23#. The noisy data are produced b
adding 5% Gaussian noise to the output of the first varia
In calculating T̂m(h) from Eq. ~9!, we use the following
parameters: N55000, Nref5500, Nb5100, log2(el)5210,
andm51,2, . . . ,10. Wechooseeu to be equal to the attrac
tor diameter. A definition and discussion of these parame
will be detailed below. As seen in Fig. 1, the fitted corre
tion exponentsD andK and noise levels converge to their
true values when the embedding dimension is increased
yondm53. We note that a convergence inD ands is readily
achieved while K exhibits fluctuations, since saturatio
should only appear in principle asm→`. In this example,
the average values of the correlation exponents and n
level, taken over embedding dimensionsm53 – 10, are ob-
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3752 PRE 61YU, SMALL, HARRISON, AND DIKS
tained as D̄51.22760.011, K̄50.30160.003, and s̄
54.98460.028.

III. SIMPLIFIED ALGORITHM

We notice thatT̂m(h) in Eq. ~9! is essentially an averag
of the functione2ixi2xj i

2/4h2
over all pairs~i,j! with an equal

unitary weight. For a given bandwidthhk , this algorithm
must perform (N21)N operations to scan all distances. F
another bandwidthhk8 (k8Þk), all the same distances ar
revisited again. Such a distance scanning process is repe
Nb11 times, leading toO(N23Nb) operations, which
wastes a large amount of computing time. The algorithm
be simplified by eliminating repetition in distance scannin
Since the same distances will be used for all bandwidth
ues we can calculate a binned interpoint distance distribu
Cm(ek) once and then take the average by summing o
indices (k50,1,2,...,Nb) of all binned interpoint distances
instead of pairs~i,j!. As a result, the Gaussian kernel corr

lation sum is approximated by averaginge2ek
2/4h2

over all
interpoint distances with the weight functionCm(ek). Under
these considerations, Eq.~9! can be rewritten as

T̂m~h!5
1

N~N21! (
k50

Nb S (
i 51

N

(
j Þ i

N

u2~e i j ,ek ,ek11!D e2ek
2/4h2

,

~10!

wheree i j 5ixi2xj i , andk50 andNb correspond to mini-
mum (e l) and maximum (eu) distances, respectively. Her
we assume thate l50 andeu equals the diameter of the a

FIG. 1. Estimation of~a! correlation dimensionD, ~b! correla-
tion entropyK, and ~c! noise levels using Hénon map data. The
dotted lines give their ‘‘true’’ valuesD true51.22,K true50.29 @18#,
ands in55%. hc50.2 is used; see below for its definition.
ted

n
.
l-
n
r

tractor. The summandu2(e i j ,ek ,ek11) is a double step func-
tion with ek,ek11 , defined through the Heaviside step fun
tion u(•) by u2(e,e1 ,e2)5u(e2e1)u(e22e), that is,

u2~e,e1 ,e2!5H 1 if e1<e,e2

0 otherwise.
~11!

Noticing that the term( i 51
N ( j Þ i

N u2(e i j ,ek ,ek11) in Eq.
~10! depends on the indexk only, this allows us to decom
pose Eq.~10! into two separate steps:~1! Calculation of the
binned interpoint distance distributionCm(ek), given by

Cm~ek!5$Number of pairs~ i , j ! whose distances

satisfy e i j 5ixi2xj iP@ek ,ek11!%

5(
i 51

N

(
j Þ i

N

u2~ ixi2xj i ,ek ,ek11!; ~12!

~2! calculation of the Gaussian kernel correlation sum
terms of

T̂m~h!5
1

N~N21! (
k50

Nb

Cm~ek!e
2ek

2/4h2
. ~13!

In Eq. ~12!, we choose the binned interpoint distancesek in a
way such that they are equidistant in a logarithmic sca
This choice has its numerical advantage since it gives a h
resolution at the small scale where the interpoint dista
distributions are more relevant to our calculations. In ad
tion, the bandwidth valueshk are determined in the sam
way asek .

SinceCm(ek) can be readily computed, the calculation
T̂m(h) based on Eq.~13! becomes simple. Equations~12!
and ~13! jointly lead to a computational complexityO(N2

1Nb
2). By comparison with the direct calculation based

Eq. ~9!, this reduces the computing time by a factor ofg
.Nb@12(Nb /N)2#;Nb .

The relation betweenCm(ek) and the Grassberger
Procaccia~GP! correlation integralCm(e) in the Euclidean
norm is

Ĉm~e!5
1

N~N21! (
k50

Ne

Cm~ek!, ~14!

where the integerNe corresponds toe5eNe
. A further un-

derstanding of Eq.~13! can be gained from an alternativ
expression of the Gaussian kernel correlation integral. To
so, we define the Gaussian kernel correlation integralTm(h)
in terms of interpoint distance distribution densityhm(e) and
Gaussian kernel functionw(e/h)5e2e2/4h2

as @12#

Tm~h!5E
0

`

hm~e!wS e

hDde, ~15!

wherehm(e) is given by

hm~e!5
dCm~e!

de
, ~16!
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where Cm(e) is the GP correlation integral with the har
kernel functionw(r /e)5u(e2r ). Substituting Eq.~16! into
Eq. ~15!, the Gaussian kernel correlation integralTm(h) is
expressed as

Tm~h!5E
0

`

e2e2/4h2
dCm~e!. ~17!

This is the integral form of Eq.~13!.
If one performs a partial integration in Eq.~17!, Tm(h)

can be expressed in the form of

Tm~h!5
1

2h2 E
0

`

e2e2/4h2
Cm~e!e de. ~18!

In previous work, this formula was used to estimateT̂m(h)
@24,25#.

IV. COMPUTATIONAL CONSIDERATIONS

A. Efficient binning

The use of the simplified algorithm given by Eqs.~12!

and~13! can speed up the calculation ofT̂m(h). For instance,
for N510 000 andNb5200, this gives rise to a gain facto
g;200. We note that most of the time is consumed in co
puting the binned interpoint distance distributionCm(ek) in
Eq. ~12!, which takesN(N21) operations. Apart from the
remarkable advance by using Eqs.~12! and ~13!, a further
reduction of computing time is achievable. In this algorith
we adopt three improvements.

~1! A set ofNref representative points randomly chosen
the attractor are used for the sum overi to replace the origi-
nal N points in Eq. ~12!. This reducesO@N(N21)# to
O@(N21)3Nref#. Usually, we useNref;N/10.

~2! We observe that large distances have a negligible c
tribution to the Gaussian kernel correlation sumT̂m(h), as in
the GP algorithm@26#. Thus we set an upper limit of th
correlation distanceeu to be smaller than the attractor diam
eter, above which the binning is not done. This can s
computing time by a factor of 100– 101, depending on the
value ofeu .

~3! A recursive version is used. Since we computeCm(ek)
for a series of consecutive embedding dimensionsm
51,2,...,M and in theL2 norm ek

2(m11)5ek
2(m)1(v i 1mt

2v j 1mt)
2, the distance in them dimension is successivel

used in the (m11) dimension.
These three binning methods are found to be very e

cient and speed up the calculation by a factor;101– 102 at
least.

B. Robust fitting procedure

Direct fitting based on Eq.~6! does not make sense. W
find that thoughD ands can be extracted with a high prec
sion, there is an uncertainty betweenf and K. This is be-
causef and e2mKdt are not independent for a fixedm but
their productb5fe2mKdt is a real independent paramete
In the nonlinear fitting process, as long as a stableb is ob-
tained, the program will return values off andK. But such
f andK are in general arbitrary.
-

,

n-

e

-

In the following, we introduce a three-step fitting metho
which is found to be quite robust. The described method
extractD ands to a high precision and obtain a fair estima
of K. The procedure is detailed as follows.

~1! Fitting D, s, andb. We use the relation~6! between
T̃m(h) and h to fit D, s, and b. The values ofD and s
obtained will be used in the next step. Lettingb5fe2mKdt

yields a model equation

y~h!5T̃m~h!5bhmm2D/2~h21s2!~D2m!/2. ~19!

~2! Fitting K and deriving f. We use y(h)
5T̃m11(h)/T̃m(h) to eliminatef, leading to a model

y~h!5he2KdtS m

m11D D/2

~h21s2!21/2. ~20!

We fit K with D and s fixed. Thenf can be derived from
f5bemKdt, whereb is given in the last step.

~3! RefittingD, K, ands. We use the original relation~6!
to fit D, K, and s with the fixed f derived in the last
step. D, K, ands obtained in the last two steps are used
trial values.

Note that the use of Eq.~20! requires computing the
Gaussian kernel correlation integrals for two consecut
embedding dimensions. In practice, we computeT̂m(h) for
m51,2,...,M and extractD, K, ands as functions ofm. Thus
the fitting procedure described above is performed for c
secutive embedding dimensions. Furthermore, the stan
deviations of the correlation integralT̂m(h) are used as
weights in the fitting procedure@12#. This can greatly reduce
fitting errors by comparison with a calculation using equ
weights. The latter results in large deviations at higher e
bedding dimensions.

C. Choice of cutoff bandwidth hc

There exists an unsolved technical problem in the non
ear fitting procedure described above, that is, determina
of the largest bandwidthhc to be used within the scaling
region. This is a difficult task in the presence of noise. T
reason is simple: noise masks the scaling region at the s
scale. Intuitively,hc should be small enough to keep fittin
in the scaling region presented by the underlying noise-f
dynamics. Buthc cannot be so small as to prevent extracti
D. On the other hand,hc should not be so large so as
exceed the scaling region. In the general case, we sugg
choice ofhc>3s.

Numerical simulations show that the fitteds is insensitive
to the choice of cutoff bandwidthhc . Thus, an iteration
scheme can be adopted. In the first run, a trialhc , for ex-
ample,hc50.5, is used so as to obtain a fitteds. The value
of 3s is in turn adopted as the cutoff bandwidthhc .

Caution should be used when the noise level is either h
or low. For example, a 30% noise level will give rise tohc
50.9. This value is close to the upper limit of the line
scaling region for most chaotic attractors~tested!. On the
other hand, when the noise level is low, say, below 3%,
value of 3s is to small to be used forhc . In practice, we
recommend fittingD, K, ands for a series of cutoff band-
width values starting from a small value and from this ide
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3754 PRE 61YU, SMALL, HARRISON, AND DIKS
tifying the saturation region of the scaling parameters a
function ofhc . A good cutoff bandwidth is thus chosen as
value below the deformation region, but as large as poss
to reduce the fitting errors.

V. EXAMPLES AND TESTS

In this section, we demonstrate the performance of
simplified Gaussian kernel algorithm presented in Secs
and IV by applying it to some well-known chaotic system
namely, the He´non map and Lorenz chaos. First the cle
data are generated from the standard models@23#. The noisy
time series are then prepared by adding a Gaussian n
component with a standard deviations in to the noise-free
data. In all cases, we fixNb5200, log2(el)5210. The num-
ber of delay vectorsN, the embedding dimensionm, and the
upper limit of scaleeu are left to be adjustable. The compu
ing time to be used below is the full CPU time of the pr
gram and all tests are done on an ULTRA 10 SUN Works
tion. In addition, the recursive algorithm is adopted for bo
direct and improved Gaussian kernel algorithms and
number of reference points is set to beNref5N/10.

A. Speed with respect to direct implementation

In order to make a comparison with the direct impleme
tation of the GKA in Secs. II B and II C we first set the upp
limit of the correlation distanceeu to be equal to the diam
eter of the attractor. In this case, all interpoint distances
binned in order to test the improvement of the simplifi
algorithm Eqs.~12! and ~13! with respect to the direct cal
culation of Eq.~9!. Two groups of controlled tests have be
conducted usingN510 000,m51,2, . . . ,15 for theLorenz
chaos andN55000,m51,2, . . . ,10 for the He´non map. Not
surprisingly, the direct calculation ofT̂m(h) takes quite a

FIG. 2. Computing time as a function of the upper limit of sca
eu , given by log2(eu), for s in510%. ~a! Hénon map,N55000 and
m51,2, . . . ,10 and ~b! Lorenz chaos, N510 000 and m
51,2, . . . ,15. Twolinear regions I and II are indicated by th
dashed and solid lines, respectively. Note that the appearanc
steps in~a! is because we use one second as the time unit.
a

le

e
II
,

ise

-

e

-

re

long time; for the former 29 569 seconds~.8 hours! are
required while for the latter 4679 seconds are needed.
contrast, the simplified algorithm is much faster than the
rect implementation of the GKA and, as expected, give
speeding-up factorg5Tdirect/Tsimplified.400. This value is
twice Nb since the exponential operation is time consum
in Eq. ~9!. It follows that the improvement by using Eqs.~12!
and ~13! is indeed significant.

We next examine the dependence of the computing t
on the upper limit of the correlation distanceeu . Figure 2
depicts the computing time for the He´non map and Lorenz
system. Our tests are terminated at the smallest scalee0 ,
below which the measuredD ands deviate from their cor-
responding true values by 10%, in Fig. 2 log2(e0)50 for the
Hénon map and log2(e0)50.5 for the Lorenz system. By
comparison with the direct implementation, a tot
speeding-up factorg.2500 has been achieved ate0 . More-
over, we see that the use ofeu alone leads to an improvemen
of speed by 1–6 times. A further feature is observed in F
2: that there is a turning point which separates two lin
regions. Below this point, the computing time shows a re
tively weak dependence on log2(eu), while in the second re-
gion decreasingeu gives rise to a significant reduction o
computing time. This leads us to suggest thateu be set within
the linear region I.

B. Cutoff bandwidth hc

Figure 3 shows the average values ofD, K, and s on
increasing the cutoff bandwidthhc in the Hénon map and
Lorenz system. Plotted are average values taken ovem
53 – 6 for the He´non map (N55000) and overm56 – 10
for the Lorenz model (N510 000). These represent me

of
FIG. 3. Fitted parametersD, K, ands as a function of the cutoff

bandwidthhc in the Hénon map~left column! and Lorenz model
~right column!. The solid, dotted, and dashed lines correspond
three input noise levels,s in52%, 5%, and 10% for the He´non map
ands in55%, 10%, and 20% for the Lorenz model.



sy
is
n
e
on
of

rg
to

ed
th
he
in
re
co
-

t
th

a
d

n

f
n

l al-
i-
rks
vel
ar-
oth

nt
el

m-
up

al-
ide-

n
ed
w
ID
is

un-
n-
se
ian
ly,
tro-

e
ms

is

,
as

y
ord-
r
erial

le-
e

al

st

ant

rm
tru
b
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surements in the discrete mapping and continuous flow
tems. For both types of dynamics, it is obvious that there
broad scaling region where both the correlation dimensioD
and noise levels fitted are saturated around their true valu
and from thishc can be chosen. Notice that the correlati
entropy K exhibits a sensitive dependence on the cut
bandwidthhc for s in>5%, decreasing withhc , and shows
considerable difference for different noise levels at the la
bandwidth. The latter indicates that it is more difficult
measureK when the noise level is high. Further,K should be
estimated whenm is sufficiently large@20#. The tests given
in Fig. 3 do not meet this limiting condition.

C. Precision against noise level

We examine the estimatedD and s as a function ofs in
for different types of independent and identically distribut
~IID ! noise: Gaussian, uniform, and a combination of
Gaussian with uniform IID noise with each being 50%. T
Lorenz system is used as a representative example. The
noise levels in is set from 0% to 50%. Numerical results a
shown in Fig. 4. As can be seen, the measurements of
relation dimensionD and noise levels are in good agree
ment with their true values for pure Gaussian IID noise up
s in550%. The results also show good consistency for
combined noise when the noise level iss in,40%. This is
what is expected since the GKA is established under an
sumption of Gaussian noise. By contrast, the correlation
mension is underestimated and exhibits a large deviatio
the case of the pure uniform IID noise fors in>20%, but the
Gaussian kernel algorithm still provides a fair estimate oD
and s, as indicated by circles in Fig. 4, in particular whe

FIG. 4. Measurements of~a! correlation dimensionD and ~b!
noise levels using the Gaussian kernel algorithm.d, s, and L
correspond to Gaussian, uniform, and a combination of unifo
with Gaussian noise, respectively. The dotted lines give their
values. Calculations are performed based on averages over em
ding dimensionsm58 – 15.
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s in,20%. These results show that the Gaussian kerne
gorithm is a reliable tool for measuring the correlation d
mension and noise level from noisy time series and wo
well for different types of noise sources when the noise le
is below 20%. This nice property provides a basis for ch
acterizing experimental data that are believed to contain b
types of noise.

VI. CONCLUDING REMARKS

The main point in this paper is to develop an efficie
algorithm to simplify the calculation of the Gaussian kern
correlation integral. Numerical simulations show that our i
proved algorithm is computationally efficient and speeds
the calculation by a factorg;(2 – 10)Nb by comparison
with direct implementation. We hope that this improved
gorithm meets broad computational needs and can find w
spread applications in characterizing experimental data.

We find that the GKA not only works for pure Gaussia
noise, but is also applicable to other types of noise provid
that the underlying noise level is relatively low, say, belo
20%, such as a combination of Gaussian with uniform I
noise and even uniformly distributed noise. This property
of practical importance since the noise type is usually
known a priori in experimental time series data. More ge
erally, any filtering and the presence of multiple noi
sources will turn the noise into an approximately Gauss
distribution according to the central limit theorem. Recent
the GKA has been successfully used to characterize elec
cardiograph data of ventricular fibrillation@27#.

The simplified GKA provides a reliable estimation of th
correlation dimension and noise level. However, it see
difficult to extract exactly the correlation entropyK from the
non-linear fitting procedure described in Sec. IV B. This
understandable because we have assumedf to be a constant
in Eq. ~6!, which in turn leads to Eq.~20!. This is true only
whenAh21s2 is small. Therefore, for fixeds, the deviation
of K will increase with the bandwidthhc . On the other hand
the correlation entropy is asymptotically obtained only
m→` according to its definition.

Note that, in writing Eq.~9!, we assume that the dela
vectors are independently distributed on the attractor acc
ing to the distributionr̃m(x). This is not always true. Fo
data generated from continuous dynamical systems, s
temporal correlation must be ruled out@28#. Finally, though
the simplified algorithm is much faster than the direct imp
mentation of the GKA, it is not suitable for too long tim
series since the algorithm forCm(ek) is still O(N3Nref).
Nevertheless, the improved GKA is fast enough forN
;104– 105 long on most current workstations and person
computers.

Source codes~FORTRAN 77! can be obtained on reque
from the first author.
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Hübner, Phys. Lett. A138, 176 ~1989!.
@8# R. L. Smith, J. R. Stat. Soc., Ser. B Methodol.54, 329~1992!.
@9# G. G. Szpiro, Physica D65, 289 ~1993!.

@10# T. Schreiber, Phys. Rev. E48, R13 ~1993!.
@11# J. C. Schouten, F. Takens, and C. M. van den Bleek, P

Rev. E50, 1851~1994!.
@12# C. Diks, Phys. Rev. E53, R4263~1996!.
@13# H. Oltmans and P. J. T. Verheijen, Phys. Rev. E56, 1160

~1997!.
@14# D. Kugiumtzis, Int. J. Bifurcation Chaos Appl. Sci. Eng.7,

1283 ~1997!.
@15# J. Argyris, I. Anderadis, G. Pavlos, and M. Athanasiou, Cha

Solitons and Fractals9, 343 ~1998!.
@16# T. Schreiber, Phys. Rev. E56, 274 ~1997!.
s.

,

@17# J. G. Caputo and P. Atten, Phys. Rev. A35, 1311~1987!.
@18# F. Takens, inDynamical Systems and Turbulence, Warwic

1980, edited by D. A. Rand and L. S. Young~Springer-Verlag,
New York, 1981!, Vol. 898, pp. 366–381.

@19# J. M. Ghez and S. Vaienti, Nonlinearity5, 777 ~1992!; J. M.
Ghez, E. Orlandini, M. C. Tesi, and S. Vaienti, Physica D63,
282 ~1993!.

@20# M. Frank, H.-R. Blank, J. Heindl, M. Kaltenha¨user, H. Köch-
ner, W. Kreische, N. Mu¨ller, S. Poscher, R. Sporer, and T
Wagner, Physica D65, 359 ~1993!.

@21# M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, Phy
D 51, 52 ~1991!.

@22# W. H. Press, S. A. Teukolski, W. T. Vetterling, and B. P
Flannery, Numerical Recipes in FORTRAN, 2nd ed. ~Cam-
bridge University Press, Cambridge, 1992!.

@23# A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano
Physica D16, 285 ~1985!.

@24# T. Schreiber, Phys. Rep.308, 1 ~1999!.
@25# A large error in estimatingD, K, and s may result. This is

because Eq.~17! is derived under the condition thate l50 and

eu5`. This is not the case whenT̂m(h) is numerically com-
puted.

@26# J. Theiler, Phys. Rev. A36, 4456~1987!.
@27# Dejin Yu, M. Small, R. G. Harrison, C. Robertson, G. Cleg

M. Holzer, and F. Sterz, Phys. Lett. A265, 68 ~2000!.
@28# J. Theiler, Phys. Rev. A34, 2427~1986!.


